首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
航空   19篇
航天技术   22篇
  2023年   4篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2003年   6篇
  1994年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
The significance of external influences on the environment of Earth and its atmosphere has become evident during recent years. Especially, on time scales of several hundred years, the cosmogenic isotope concentration during the Wolf-, Spoerer-, Maunder- and Dalton-Minimum indicates an increased cosmic ray flux. Because these grand minima of solar activity coincide with cold periods, a correlation of the Earth climate with the cosmic ray intensities is plausible. Any quantitative study of the effects of energetic particles on the atmosphere and environment of the Earth must address their transport to Earth and their interactions with the Earth’s atmosphere including their filtering by the terrestrial magnetosphere. The first problem is one of the fundamental problems in modern cosmic ray astrophysics, and corresponding studies began in the 1960s based on Parker’s cosmic ray modulation theory taking into account diffusion, convection, adiabatic deceleration, and (later) the drift of energetic particles in the global heliospheric magnetic field. It is well established that all of these processes determining the modulation of cosmic rays are depending on parameters that are varying with the solar magnetic cycle. Therefore, the galactic cosmic ray intensities close to Earth is the result of a complex modulation of the interstellar galactic spectrum within the heliosphere. The modern view of this cosmic ray modulation is summarized in our contribution.  相似文献   
2.
3.
We will discuss the observed, heavily damped transversal oscillations of coronal loops. These oscillations are often modeled as transversal kink oscillations in a cylinder. Several features are added to the classical cylindrical model. In our models we include loop curvature, longitudinal density stratification, and highly inhomogeneous radial density profiles. In this paper, we will first give an overview of recently obtained results, both analytically and numerically. After that, we shed a light on the computational aspects of the modeling process. In particular, we will focus on the parallellization of the numerical codes.  相似文献   
4.
Voitenko  Yuriy  Goossens  Marcel 《Space Science Reviews》2003,107(1-2):387-401
We study kinetic excitation mechanisms for high-frequency dispersive Alfvén waves in the solar corona, solar wind, and Earth's magnetosphere. The ion-cyclotron and Cherenkov kinetic effects are important for these waves which we call the ion-cyclotron kinetic Alfvén waves (ICKAWs). Ion beams, anisotropic particles distributions and currents provide free energy for the excitation of ICKAWs in space plasmas. As particular examples we consider ICKAW instabilities in the coronal magnetic reconnection events, in the fast solar wind, and in the Earth's magnetopause. Energy conversion and transport initiated by ICKAW instabilities is significant for the whole dynamics of Sun-Earth connection chain, and observations of ICKAW activity could provide a diagnostic/predictive tool in the space environment research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
6.
In this paper we start from the most recently observed fact that the solar wind plasma after passage over the termination shock is still supersonic with a Mach number of about 2. To explain this unexpected phenomenon and to predict the evolution of properties of the downstream plasma flow we here consider a two-fluid proton plasma with pick-up protons as a separate suprathermal, second proton fluid. We then formulate a self-consistent system of hydrodynamical conservation equations coupling the two fluids by dynamical and thermodynamical coupling terms and taking into account the effects of newly incorporated protons due to charge exchange with the H-atoms in the heliosheath. This then allows us to predict that in the most probable case the solar wind protons will become subsonic over a distance of about 30 AU downstream of the shock. As we can also show, it may, however, happen that the plasma mixture later again reconverts to a supersonic signature and has to undergo a second shock before meeting the heliopause.  相似文献   
7.
In this paper, we extend the stability analysis of cold sharp shear flows to warm astrophysical cases with, inevitable, gradual velocity gradient in the interface region in the presence of viscosity effect. Using linear perturbation theory as well as the local approximation method, the instability growth rate of the excited electromagnetic modes has been investigated for the relativistic and non-relativistic cases of solar wind interacting with interstellar plasma medium. Results show that astrophysical shear systems with a small velocity gradient in the transition region are more stable rather than larger ones. Moreover, dependent on the viscosity coefficient value, the viscosity effects could have a positive role on the instability growth rate of the system in some range of initial bulk velocity, while it plays a destructive role in other velocity ranges.  相似文献   
8.
D. J. Wu 《Space Science Reviews》2005,121(1-4):333-342
Nonthermal electrons play a major role during solar flares since not only they contain a large amount of the released energy but also they provide important information of the flaring physics through their nonthermal radiation in radio and hard X-ray bands. In a recent work Wu (Phys. Plasmas 10 (2003) 1364) proposed that dissipative solitary kinetic Alfvén wave (DSKAW) with a local shock-like structure could provide an efficient acceleration mechanism for energetic electrons in a low-β plasma. In the present paper dynamical characteristics of the DSKAW acceleration mechanism in solar coronal plasmas are studied and its application to the acceleration of flaring electrons is discussed.  相似文献   
9.
The worldwide distribution of High Mountain Observatories provides a unique opportunity for performing contemporary measurements under different geomagnetic/altitude conditions and for collecting long-term data series. In this context, the history and some activities performed at two historical Research Stations are summarized: Chacaltaya Laboratory (Bolivia) and the Testa Grigia Research Station (Italy).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号